ON MANIPULATION OF NANO-OBJECTS BY SCANNING PROBE AND NANOROBOTIC METHODS

Main Article Content

Svetomir Ilija Simonović

Abstract

The paper explains basic operating principles of scanning tunnelling microscopes, atomic force microscopes and nanorobotic systems, with special respect to their use as manipulators of nano-sized objects. Single atom manipulation and  contact and non-contact manipulation of nanoparticles are described. Also, particular consideration is given to manipulation of nanotubes and some testing of their features by use of nanorobotic systems. The three methods are compared  and their appropriateness for particular manipulation tasks is considered. The more degrees of freedom a method has and  exerts greater manipulation force, the lower is the resolution of manipulation.

Article Details

Section
Papers

References

[1] Lindsay, S.M., Introduction to Nanoscience, Oxford University Press Inc., New York, 2010
[2] Binns, C.,: Introduction to Nanoscience and Nanotechnology, John Wiley & Sons, Inc., 2010
[3] Bhushan, B. (Ed), Springer Handbook of nanotechnology, Springer-Verlag Berlin Heidelberg, 2010
[4] Avouris, P., Manipulation of matter at the atomic and molecular levels, Acc. Chem. Res. No. 28, pp. 95–102, 1995
[5] Crommie, M.F. , Lutz, C.P. , Eigler, D.M., Confinement of electrons to quantum corrals on a metal surface, Science No. 262, pp. 218–220, 1993
[6] Whitman, L.J., Stroscio, J.A., Dragoset, R.A., Cellota, R.J., Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope, Science No. 251, pp. 1206–1210, 1991
[7] Lyo, I.-W. , Avouris, P., Field-induced nanometer-
scale to atomic-scale manipulation of silicon surfaces with the STM, Science No. 253, pp.173–176, 1991
[8] Dujardin, G., Walkup, R.E., Avouris, P., Dissociation
of individual molecules with electrons from the tip of a scanning tunneling microscope, Science No. 255, pp. 1232–1235, 1992
[9] Shen,T.-C., Wang, C., Abeln, G.C., Tucker, J.R.,
Lyding, J.W., Avouris, P., Walkup, R.E., Atomic-scale
desorption through electronic and vibrational-excitation mechanisms, Science No. 268, pp. 1590–1592; 1995
[10] 46.42 Cuberes, M.T., Schittler, R.R., Gimzewski, J.K., Room-temperature repositioning of individual C60 molecules at Cu steps: Operation of a molecular counting device, Appl. Phys. Lett. No. 69, pp. 3016–3018, 1996
[11] 46.43 Lee, H.J., Ho, W., Single-bond formation and characterization with a scanning tunneling microscope, Science, No. 286, pp. 1719–1722, 1999
[12] Schäfer, D.M., Reifenberger, A. Patil, R., Andres, R.P., Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope, Appl. Phys. Lett. No. 66, pp. 1012–1014, 1995
[13] Junno, T., Deppert, K. , Montelius, L., Samuelson, L., Controlled manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett. No. 66, pp. 3627–3629, 1995
[14] Sheehan, P.E., Lieber, C.M., Nanomachining, manipulation and fabrication by force microscopy, Nanotechnology No. 7, pp. 236–240, 1996
[15] Baur, C. , Gazen, B.C., Koel, B., Ramachandran,T.R.,
Requicha, A.A.G., Zini, L., Robotic nanomanipulation with a scanning probe microscope in a networked computing environment, J. Vac. Sci. Technol. B 15, pp. 1577–1580, 1997
[16] Resch, R., Baur, C., Bugacov, A., Koel, B.E., Mad-hukar, A., Requicha, A.A.G., Will, P., Building and manipulating 3-D and linked 2-D structures of nanoparticles using scanning force microscopy, Langmuir 14, pp. 6613–6616, 1998
[17]Yu, M.F., Dyer, M.J., Skidmore, G.D. , Rohrs, H.W.,
Lu, X.K., Ausman, K.D., Von Ehr, J.R. , Ruoff, R.S.,
Three-dimensional manipulation of carbon nano-tubes under a scanning electron microscope,Nanotechnology No.10, pp. 244–252, 1999
[18] Dong, L.X., Arai, F., Fukuda, T., 3-D nanorobotic
manipulation of nano-order objects inside SEM, Proc. 2000 Int. Symp. Micromechatron. Hum. Sci., Nagoya (IEEE, Piscataway 2000), pp. 151–156
[19] Bartenwerfer, M., Zimmermann, S., Tiemerding, T., Mikczinski, M., Fatikow, S., Automated Micro- and Nanohandling Inside the Scanning Electron Microscope, In: Sun, Y, Liu, X., (Eds.), Micro- and Nanomanipulation Tools, Wiley-VCH, Weinheim, Germany, 2015
[20] Hafner, J.H. , Cheung, C.-L., Oosterkamp, T.H.,
Lieber, C.M., High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies, J. Phys. Chem. B 105, pp. 743–746, 2001
[21] Dong, L.X., Arai, F., Fukuda, T., Electron-beam-
induced deposition with carbon nanotube emitters, Appl. Phys. Lett. No. 81, pp. 1919–1921, 2002
[22] Dong, L.X., Arai, F., Fukuda, T., 3-D nanorobotic
manipulations of multi-walled carbon nanotubes,
Proc. 2001 IEEE Int. Conf. Robot. Autom. (ICRA2001),
Seoul (IEEE, Piscataway 2001), pp. 632–637
[23] Dong, L.X., Arai, F., Fukuda, T., Three-dimensional
nanorobotic manipulations of carbon nanotubes,
J. Robot. Mechatron. JSME No. 14, pp. 245–252, 2002
[24] Wang, Y., Shen, Y., Li, B., Wang. S., Zhang, J., Zhang, Y., Hu, J., Nanomanipulation of Individual DNA Molecules Covered by Single-Layered Reduced Graphene Oxide Sheets on a Solid Substrate, J. Phys. Chem. B, No. 122 (2), pp 612–617, 2018
[25] Sarkar, N., Raafat R. Mansour, R. R., Single-Chip Scanning ProbeMicroscopes, In: Sun, Y, Liu, X., (Eds.), Micro- and Nanomanipulation Tools, Wiley-VCH, Weinheim, Germany, 2015
[26] Zhang, Y., Yan, P., An adaptive integral sliding mode control approach for piezoelectric nano-manipulation with optimal transient performance, Mechatronics, No. 52, pp 119-126, 2018
[27] Korayem, M.H., Hoshiar, A.K., Badrlou, S., Yoon, J., Modeling and simulation of critical force and time in 3D manipulations using rectangular, V-shaped and dagger-shaped cantilevers, European Journal of Mechanics - A/Solids, No. 59, pp 333-343, 2016
[28] Korayem , M. H., Saraie, Maniya. B. , Saraee, Mahdieh. B., Analysis the effect of different geometries of AFM's cantilever on the dynamic behavior and the critical forces of three-dimensional manipulation, Ultramicroscopy, No. 175, pp 9-24, 2017
[29].Dong, L., Zhang, L., Yu, M., Nelson, B. J., Nanorobotic Manipulation of Helical Nanostructures, In: Sun, Y, Liu, X., (Eds.), Micro- and Nanomanipulation Tools, Wiley-VCH, Weinheim, Germany, 2015